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The generation of trailing vortices in the wakes of surface-mounted obstacles at  
moderate Reynolds numbers is examined by channel-flow experiments and numerical 
simulation. A skew-mounted obstacle generates a single concentrated trailing vortex, 
together with weak streamwise vorticity of opposite sense extending to considerable 
distances on either side and zero gross circulation across the whole stream. Cross- 
stream-symmetrical obstacles (having a streamwise plane of symmetry normal to the 
plane surface) generate one or more nested vortex pairs, usually of alternate sense, 
of which one pair is normally dominant. The sense of rotation of the dominant vortex 
pair depends on both the shape of the obstacle and its depth relative to that of the 
boundary layer. Obstacles that divide the stream laterally produce dominant vortex 
pairs with a central downwash, whereas those lifting the flow predominantly over 
.their crests produce dominant vortex pairs with a central upwash. It is argued that 
the vorticity of the dominant trailing vortices is generated largely as a component 
of cross-stream vorticity at the boundary, shed as a shear layer from the body, and 
turned inertially by the flow to form trailing vortices. It should also be emphasized 
that the dominant trailing vortex or vortex pair is generally embedded in a weak 
distribution of trailing vorticity of opposite signs, but with net circulation comparable 
with that of the dominant core. 

f .  Introddon 
Two types of trailing-vortex wake behind surface-mounted obstacles have been 

identified in the literature : horseshoe vortices behind symmetrical obstacles, and 
solitary trailing vortices behind obstacles skew to the stream. Both are reasonably well 
known, although there has been some confusion of nomenclature. Trailing vortices 
of various senses prove to be a common feature of the wakes behind most obstacles 
but cannot entirely be explained in terms of these earlier models. Here we shall limit 
discussion to two classes of surface-mounted obstacle in flow over a horizontal plane. 
These comprise bodies with cross-stream symmetry having a vertical plane of 
symmetry parallel to the undisturbed stream and those with skew symmetry obtained 
by turning cross-stream-symmetrical bodies about a vertical axis. 

Horseshoe vortices are supposed to be concentrated U-shaped vortices that form 
wherever boundary-layer vorticity is advected round a surface-mounted obstacle. 
Approaching vorticity is believed to pile up ahead of the obstacle and be stretched 
away downstream in two arms which form a trailing-vortex pair. The sense of 
circulation is downwards towards the boundary in front of the obstacle, with the 
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trailing vortices combining to produce downwash in the centre of the wake behind 
the obstacle. Aerodynamicists believe that horseshoe vortices of this kind form 
around struts a t  their junctions with wings and around wings where they join aircraft 
bodies. The mechanism has also been used to account for trailing vortices observed 
in boundary layers behind surface protuberances (Sedney 1973), for vortices around 
buildings (Hunt 1971) and for vortex wakes behind hills (Hunt & Snyder 1980). 

Flow upstream of surface mounted obstacles has been studied in a number of cases 
(e.g. Gregory & Walker 1951 ; Morkovin 1972; Baker 1979,1980) and depends on the 
Reynolds number. At  low Reynolds numbers the boundary-layer flow is free from 
organized vortices upstream of the body. At moderate Reynolds numbers the 
approaching flow separates from the lower boundary and there is a simple vortex of 
‘horseshoe sense ’, its circulation growing with increasing Reynolds number. An 
increasingly complex structure of vortices then develops, in which further pairs of 
counter-rotating vortices appear at progressively higher Reynolds numbers until the 
boundary layer becomes turbulent. Even in fully developed turbulent boundary 
layers, however, a mean vortex structure survives (Baker 1980). It should be noted 
that the conceptual model for horseshoe vortices only accounts for one sign of 
vorticity and cannot directly encompass such counter-rotating vortices. To explain 
the counter-rotating vortices account must be taken of the generation of vorticity 
at the lower boundary and over the surface of the body. 

Detailed observations of the wakes of bodies generating so-called horseshoe 
vortices have also shown the existenoe of more than one trailing-vortex pair, (e.g. 
Gregory & Walker 1956; Mochizuki 1961 ; Hunt & Snyder 1980). In most cases the 
wakes contain nested pairs of vortices with alternate sense of rotation. Although it 
has been suggested that the dominant trailing-vortex pair represents the trailing arms 
of the horseshoe vortex, careful observation suggests that only the outermost vortices 
relate directly to those upstream. The inner (and perhaps stronger) vortices appear 
to be a product of the inner wake and are observed only downstream of the obstacle. 
For moderate Reynolds numbers, at  least, those inner vortices are dominant and 
may exhibit either a central upwash or a central downwash according to the nature 
of the obstacle. A t  larger Reynolds numbers, when either the wake or both the 
boundary layer and wake are turbulent, it is more difficult to determine the structure 
of wake vortices, but there is evidence of the presence of trailing vortices which 
survive far downstream in the mean flow ; the relatively few documented cases appear 
to show central downwash (Hansen 1975). An examination of these flows at high 
Reynolds numbers is beyond the scope of the present study. 

Single trailing vortices behind slant (vortex-generator) plates have been used in 
modifying aerodynamic boundary layers and have been observed in topographic 
flows downwind of Gibraltar (Cook, Coulson & McKay 1978) and the island of Ailsa 
Craig (Jenkins et al. 1981). These vortices again appear to be a product of the wake 
and not a residue of upstream circulation. They have been identified as lateral lifting’ 
vortices associated with surface-mounted obstacles skew to the wind, and 
representing (supposedly with their mirror images in the plane boundary of both 
obstacle and trailing vortex) effective trailing-vortex pairs behind lifting aerody- 
namic bodies. In  fact this represents an over-simplification as the no-slip condition is 
inconsistent with the image system, and we shall see that vorticity generated at  the 
lower boundary plays an important role. 

The effects of organized streamwise vorticity in wakes may be of considerable 
importance : for example, it  modifies the wake structure so as to significantly increase 
the lateral transport of longitudinal momentum between the outer stream and 
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boundary, and it may be responsible for a large increase in drag behind obstacles in 
boundary layers. In view of the interest and importance of wake vortices, it is clear 
from this limited review of earlier work that the processes giving rise to wake 
circulation in flow past surface-mounted obstacles are inadequately understood. Our 
own study began from two points of reference. One was to understand the 
connectivity of the vorticity field when a skew surface-mounted obstacle generates 
a solitary trailing vortex; the other was to explain the dominant trailing-vortex pair 
with central upwash obtained in a numerical simulation of flow over a symmetrical 
rounded obstacle. All the examples we discuss below are for steady flow at no more 
than moderate Reynolds numbers. This limitation makes it a good deal easier to 
interpret both the laboratory and numerical simulations, but we must emphasize that 
our results do not necessarily carry over to the mean fields in turbulent flows, 
although they should give some guidance. 

Flow past bluff bodies is highly nonlinear and three-dimensional and there is little 
prospect of obtaining analytic solutions. It is natural, therefore, that we should use 
numerical simulation and laboratory experiments to gain insight. In  the following 
account $2 presents some basic ideas as a framework for the subsequent discussion; 
93 describes the results from the numerical integration of the Navier-Stokes 
equations for flow over smoothly rounded hills; $4 describes results for flow past 
various bodies in a water ahannel; and $5 summarizes the main results and 
conclusions. 

2. General considerations 
A number of rather general results are available on the generation of vorticity at 

boundaries, its advection and reorientation in the flow, and on the possible distri- 
bution of streamwise vorticity including trailing vortices behind obstacles. We shall 
show that diffusive annihilation of boundary-layer vorticity by vorticity of opposite 
sense generated at the boundary is of central importance in the description of flow 
over obstacles. We begin, however, by treating surface generation and inertial turning 
of vorticity within the fluid separately. 

2.1. The generation of vorticity 
Existing vorticity can be processed in the interior of homogeneous fluids by stretching 
and turning, but there is no mechanism whatsoever for the generation of fresh 
vorticity within the flow. It is, indeed, well known that all new generation of vorticity 
in homogeneous fluids must take place at the boundaries. Lighthill (1963) has shown 
that the normal flux of tangential vorticity at  a plane boundary with unit normal 

(1) 
n is 

- - (n x VIP, 
1 

P 

where p is the dynamic pressure, while Morton (1984) has argued that the total 
rate of generation of tangential vorticity per unit surface area of a fixed rigid 
boundary is 

- 

- 1 d 
,-(n x V ) p - - ( n  dt x UB), 
P 

where U, is the tangential velocity of the boundary. For flow past fixed obstacles, 
the entire surface is stationary and the sole means of generation of vorticity is by 
tangential pressure gradients along the boundary. 
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The velocity in a boundary layer increases from zero a t  the wall to the full-stream 
value at its outer edge with a corresponding increase in total head (H = $u2+ptt, 
where u is the fluid velocity and p ,  is the total fluid pressure). Because of friction, 
this total head is not conserved, but in many cases the rate of viscous dissipation 
is relatively small and may be neglected over short distances. The primary effect of 
any obstacle is always to divert flow, and this it does by creating a disturbance 
pressure field which slows down fluid in direct approach to the body and accelerates 
it laterally either over or round the body. Thus all obstacles generate local pressure 
maxima on their upstream faces. As the flow is accelerated over the crest and around 
the sides of the obstacle the approximate local invariance of head implies a local 
pressure reduction. In accordance with (1 ), vortex filaments are created continuously 
in closed loops which coincide with isobars and have anticlockwise sense about a 
pressure maximum and clockwise sense about a pressure minimum (a surface pressure 
field generated by a numerical model is illustrated in figure 4 and discussed below). 
Vorticity generated a t  the surface is carried out into the flow by diffusion and is then 
subject, with the boundary-layer vorticity, to inertial turning and stretching. All 
vorticity generated upstream of the surface pressure maximum has a (cross-flow) 
component opposite in sense to that of the vorticity imported in the boundary layer 
and will suffer at  least partial annihilation by cross-diffusion. Over the crest of the 
obstacle there is strong generation of vorticity having a component with like sense 
to that in the upstream boundary layer. We are concerned particularly with obstacles 
producing lee separation of flow, and the strong thin shear layer generated over the 
crest and flanks of the obstacle and advected into the wake downstream of separation 
then plays a dominant role. 

The pressure field generated by a skew object and the vorticity generated at its 
surface exhibit broadly the same features except that there is no longer cross-stream 
symmetry. An example of such a pressure field from the numerical simulation is 
shown in figure 20. 

It should be noted that the gross rate of generation of vorticity between two 
stations A and B is proportional to the net pressure difference p , -pB .  The 
computational domain in our numerical study was 1OL in width, where L is the radius 
at  the base of the obstacle. There is no pressure difference across the domain for 
symmetrical obstacles but there is for skew obstacles, and in the latter case there is 
a small progressive net generation of streamwise vorticity at  the boundaries as we 
move through the working section. 

2.2. Production of streamwise vorticity by turning boundary-layer vorticity 
round an obstacle 

In this section we concentrate attention on the turning (or tilting as it is sometimes 
called) of boundary-layer vorticity advected round an obstacle and for the moment 
ne-t both the generation of fresh vorticity and effects of diffusion. Far upstream, 
the boundary layer m y  be represented as a distribution of vortex filaments which 
are parallel to the boundary and normal to the main stream. There is a decrease in 
the local advection velocity ahead of the body, an increase to the sides, and no change 
Clt large lateral distances. Thus the main deformation of a vortex filament advected 
in the upper boundary layer around the obstacle is retardation upstream of the 
obstacle, turning towards the obstacle on either side, and advection without change 
far to either side. 

One important property of filaments of boundary-layer vorticity as they are 
advected towards and locally turned about an obstacIe is their connectivity. If 
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(ii) 

(iii) 

FIGURE 1 .  Advected filaments of boundary-layer vorticity (i) are distorted by an obstacle (ii) and 
the distorted form is equivalent to the initial straight filament together with a set of closed vortex 
loops (iii).  

diffusion is neglected, a vortex filament can be locally distorted by a combination 
of turning, and stretching but this will not affect its local strength (measured by the 
vorticity intersecting a cross-section) ; moreover, it is possible to sever the filament. 
A locally distorted filament, as illustrated in figure 1 ,  is entirely equivalent to an 
undisturbed filament together with one or more closed loops of equal strength. It 
follows that the reorientation of vorticity around the obstacle can produce local 
changes of circulation in circuits normal to the undisturbed stream, but it cannot 
produce global changes in normal circuits which enclose the whole flow disturbance 
due to the obstacle. The only effects of reintroducing viscosity will be an exchange 
of vorticity between adjacent filaments and, where these are of opposite sense, mutual 
annihilation of the two senses of vorticity and reconnection of the filaments. Thus, 
the effect of diffusion on configuration (iii) of figure 1 would be to recreate 
configuration (ii). 

2.3.  Global circulation 
Consider a uniform stream U flowing in the x-direction over a plane boundary z = 0 
past an obstacle of arbitrary shape mounted on the lower boundary in a 
neighbourhood of the coordinate origin (figure 2). In  the undisturbed approaching 
boundary layer all vorticity is in the y-direction, but vorticity with a streamwise 
component is produced (i) by turning of incident boundary-layer vorticity, and (ii) 
by generation of vorticity at  the boundary and surface of the obstacle in the 
disturbance pressure field. The circulation in the circuit V(0) in the plane x = 0, 
corresponding with 

0, B-,(O,m,O), C+(O,m,m),  E+(O, -00 ,  -m) ,  A+(O, -m,O), 0, 

but following the curve of intersection of obstacle surface and plane near 0, is 
” c 

9 F L M  175 
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FIQURE 2. Coordinate system for flow past an arbitrary obstacle. 

since v = 0 everywhere on the boundary z = 0 and obstacle surface, and since the 
stream is undisturbed far from the obstacle. (An estimate for the disturbance velocity 
at large distance, R = (y2+z2):, is provided by the disturbance due to  an obstacle 
in an inviscid stream, with leading term of doublet character having distant velocity 
O(R-2) contributing O(R-') to  the circulation.) By the same argument, 

w.dA = cdydz = 0 LX, h 
for corresponding circuits %(x) in each and every plane x = constant, where 
ldAl = dydy is the element of area in a cross-sectional plane. Streamwise circulation 
can be produced locally but not globally by turning advected boundary-layer vorticity 
(92.2). Further, the total rate of generation of x-vorticity at the lower boundary in 
a strip of unit x-width is 

since the pressure disturbance a t  infinity is also zero. Thus, regardless of the shape 
and orientation of an obstacle, it is impossible to generate net streamwise circulation 
in the whole flow past a surface-mounted obstacle. This simple result, that the total 
circulation (or net streamwise vorticity) in cross-sectional circuits is zero for all x, 
has important implications. For example, there is ample evidence (Cook et al. 1978, 
for Gibraltar; Jenkins et al. 1981, for Ailsa Craig) that hills, ridges and islands skew 
to the wind may produce apparent solitary vortex wakes, and these have surprised 
observers with their strength. It is clear that  these single dominant trailing vortices 
have significant circulation measured in circuits closely embracing the vortex core, 
but it follows also from the arguments above that these cores must be embedded in 
distributions of streamwise vorticity of opposite sense to yield zero total cross-stream 
circulation. The other streamwise vorticity must be relatively diffuse as i t  has not 
been reported. It should be particularly noted that earlier suggestions that the skew 
islands with single trailing vortex might be regarded as a half-span aerofoil extending 
above the boundary with image aerofoil and image trailing vortex below the 
boundary, equivalent in total to  a finite lifting aerofoil with a vortex pair, are 
erroneous. Images have no place in viscous flows, and the streamwise vorticity which 
in an inviscid flow would be concentrated in an image vortex must in our flows be 
distributed through the flow. 
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2.4. Circulation to one side of the obstacle 
In general there is vertical flow in the wake behind an obstacle, and according to the 
nature of the obstacle and its height relative to the incident boundary layer this may 
be upward (upwash) or downward (downwash). Hence there is non-zero circulation, 
K(0,  m), arising from the segment DO of the circuit, 

0, B+(o, m, 01, C + ( o ,  m,03), D(o,o, m), 0, 

but following the curve of intersection of the obstacle surface and plane near 0, and 
also in parallel circuits (5 = constant) from some distance upstream to far 
downstream of the body. For cross-stream-symmetric bodies both turning of the 
advected vorticity and generation of vorticity at the boundary by pressure gradients 
are antisymmetric about the symmetry plane, and it follows that streamwise 
vorticity in the wakes of symmetric obstacles must be organized into a vortex pair 
or a multiple system of vortex pairs, usually with a single dominant pair. We shall 
find that the core circulation of the dominant vortex may be almost an order of 
magnitude greater than the one-sided circulation. 

2.5. A synthesis of the generation, processing and diffusion of vorticity 
We complete this section with a brief synthesis of the effects of generation, diffusion 
and inertial processing (turning and stretching) of vorticity for the case of the 
traditional horseshoe vortex. The presence of flow separation a t  the baseplate 
upstream of the obstacle with reattachment on the upstream face of the obstacle 
implies downflow over the lower part of the face with upflow over the crest. The two 
levels of flow must therefore be separated by at least one dividing streamline, 
terminating on the upstream face at  an attachment point. According to the 
traditional conceptual model of horseshoe vortices, boundary-layer vorticity 
(7 = au/az) advected towards the obstacle below this streamline is trapped upstream 
and turned and stretched to either side of the obstacle, thereby producing a 
concentrated vortex wrapped around the obstacle with arms trailing downstream. 

The traditional model neglects all generation of vorticity at  boundaries, but it is 
not difficult to assess the importance of vorticity generation, at  least when the 
upstream boundary-layer depth is small relative to the height of the obstacle. For 
an obstacle with cross-stream symmetry, we may then assume that the dynamic 
pressure at the separation point on the leading edge is $Uz, and it follows by 
integration of (1) along the upstream boundary and up the leading edge of the 
obstacle to the separation point that the gross rate of generation of vorticity over 
this region of boundary is -+U2. This is precisely equal and opposite to the rate at 
which vorticity is advected in the boundary layer towards the obstacle. 

uy dz = t U z .  

There is, therefore, a balance between advective import and production of vorticity 
in the upstream plane of symmetry, and the circulation per unit streamwise length 
taken through the full depth of the boundary layer must decrease to zero as the 
obstacle is approached. Within the decreasing circulation there will generally remain 
a residue of positive vorticity in the upper boundary layer and negative vorticity near 
the boundary at which it has been generated. Except at low Reynolds numbers, 
diffusion by itself acts too slowly to intermix these separate concentrations as the 
obstacle is approached. The nested structure of vortices observed upstream of 

s 

9-2 
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obstacles at moderate Reynolds numbers, each geometrically similar to a horseshoe 
vortex but with sense of rotation that alternates with increasing distance from the 
obstacle, presumably serves to  sharpen vorticity gradients and so enhance cross- 
diffusion. These multiple vortices extend round the sides of obstacles, although a t  
moderate Reynolds numbers they decay fairly rapidly by cross-diffusion and may 
not extend past the obstacle. Only the generation of vorticity of opposite sign and 
not just a flow instability can account, for circulations with opposite vorticity. 

The strong trailing vortices that have been observed in the centre of the wakes of 
obstacles (e.g. Gregory & Walker 1956) appear to  be distinct from those seen at the 
sides and traceable to disturbances upstream of the obstacle. Our numerical and 
experimental results show that such wake vortices can be formed by the turning of 
vorticity which is generated over the surface of the obstacle and separates as a 
concentrated shear layer behind the crest or sides. The sense of turning and hence 
the sense of the organized vortex pair behind a symmetric obstacle depends on the 
shape of the obstacle and its height relative to that of the boundary layer. The solitary 
dominant vortices observed behind skew obstacles are also formed from vorticity 
generated at the surface of the obstacle and processed in the wake. 

Although the results we shall describe are restricted to  moderate Reynolds 
numbers, the underlying mechanism is a t  once so natural and so powerful that i t  
seems likely that it should be relevant to the mean flow in turbulent wakes. 

3. Numerical simulation of flow past surface-mounted obstacles 
The numerical study was carried out, to  examine features of laminar flow past 

rounded obstacles using the Navier-Stokes equations for incompressible flow of a 
fluid with constant viscosity, 

av -+ 0-vv = -vp+ vV%, 
at 

vv = 0. 

The numerical model is that described by Mason & Sykes (1979~)  employing a 
Cartesian mesh and relying on the choice of flow parameters to ensure effective 
second-order accuracy. The consequent restrictions on flow parameters are significant 
but no more severe than the inevitable requirement that  the computational mesh 
should resolve the shear layer shed from the obstacle. The corresponding maximum 
attainable Reynolds number of flow past the obstacle, with the computing resources 
available, was a few hundred. The model uses a well-established (Piacsek & Williams 
1970) energy-conserving convective scheme and if applied outside its range of good 
approximation to a continuous solution will develop a 'rough ' solution. Tests against 
analytic theory and laboratory experiments can be found in Mason & Sykes (1979b) 
and (1981) respectively. The coordinate system and boundary geometry are sketched 
in figure 3. 

To avoid introducing flow on scales that  the model and its mesh cannot resolve 
the obstacle must have a smooth shape. The first obstacle has shape, 

cos2 [.(x: + y,2)4/2LJ, g + y; < L, (" 0,  x: + y: > L, 
2 = s(z, y) = 

where 
x, = b(x  cos8-y sin@, ys = h-'(y cosO+x sin8). 
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z = D  

z = o  

FIGURE 3. Schematic diagram in mid-plane (y = 0) of the domain of integration. 

Case 

Parameter 

Hill-base radius LIL 
Hill height h/L 
Uhlv 
iih/v 

Domain length/L 
Domain wid th l l  
Domain heightll  
Displacement thickness at centre of domainll  
Effective distance of centre of domain from 

ii/ 1J 

start of Blasius flowlL 

A B C 
1 1 1 
0.66 0.66 2.0 

100 300 150 
30 120 108 

20 20 26 
10 10 13 
10 10 13 

16 21 14 

0.3 0.4 0.7 

0.55 0.40 0.55 

Case D has a hill of elliptical section with parameters otherwise as for case €3 

TABLE 1. Parameters for the numerical simulations. All lengths are scaled in terms of the radius 
of the circular hill L; U is the free-stream velocity above the boundary layer and ii is the mean 
velocity that would exist through the height interval 0 < t < h in the absence of the obstacle 

Three cases with this type of obstacle were considered: A and B for circular hills with 
b = 1 and 8 = 0; and D for an elliptical hill with b = d2 and 8 = in. The basic 
parameters and domain sizes for cases A and B are given in table 1 ; those for case 
D are the same as for case B. The second obstacle, case C, consisted of a cylinder 
surmounted with a hemisphere : - 

h ( 0 . 5 + 0 . 5 ( 1 - ( ~ ~ + y ~ ) / L ~ ) i ) ,  x2+y2 < L, 
0, x2+ y2 2 L. 

z = s(x, y) = 

In cases A, B and D the three-dimensional domain comprised a block of 
42 x 30 x 30 x, y, z gridpoints non-uniformly spaced with resolution varying from i L  
near the obstacle to L near the upstream and downstream boundaries, where L is 
the radius of the base of the circular hill. In case C the obstacle is more bluff and 
a finer resolution is needed to meet the requirements of effective second-order 
accuracy. The domain comprises a block of 9 0 x 6 0 ~ 4 0  x, y, z gridpoints non- 
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x--+ 
FIQVRE 4. Surface pressure field for case A. The contours are projected vertically onto a horizontal 
plane. The zero of the pressure field has been determined by setting the horizontally averaged 
pressure at the top of the domain to zero. Negative values are denoted by dashed contours and 
contour interval is 0.0054U2, one tenth of the maximum value. 

uniformly spaced with resolution varying from &L near the obstacle to L near the 
upstream and downstream boundaries. 

The boundary conditions used were : no-slip on the lower boundary and hill ; rigid 
stress-free upper and lateral side boundaries ; a specified Blasius boundary layer 
beneath a uniform stream U on the upstream boundary; and a simple outflow 
condition of zero second streamwise derivative on the downstream boundary to allow 
the Blasius layer to thicken and interact with the hill before exiting. The domain 
length is about 20L, and its width and height about 1OL. The original selection of 
lateral boundary separation was intended to produce a negligible influence on the 
flow, but even at this distance there is a small pressure disturbance at  the lateral 
boundaries. 

3.1. Vortex wakes of axisymmetric obstacles 

Two cases of flow past the smooth axisymmetric obstacle are examined, for two values 
of Reynolds number. Since the boundary layer is deep we define a relevant Reynolds 
number iihlv, where 

I Ph 
ii = J U(z)dz, 

0 

where U(z )  is the undisturbed velocity profile that would exist at  the obstacle location 
in the absence of the obstacle. Case A is for Reynolds number 30 and case B for 120; 
other parameters are given in table 1 .  The solutions obtained for these values of 
Reynolds number depend qualitatively on the exact value of the Reynolds number. 
The examples shown here have been selected to illustrate the behaviour at  low and 
moderate values. A single case of flow past the more bluff obstacle at  a Reynolds 
number i ih/v of 108 is considered in case C (other parameters are given in table 1) .  

Solution fields for case A are presented in figures 4-7. Figure 4 represents the 
projection on to a horizontal plane of the surface pressure field on z = s(z, y). The 
approaching flow is retarded ahead of the obstacle, with pressure on the surface rising 
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I 

FIGURE 5. Flow directions for case A :  (a) surface stress pattern, and ( b )  streamwise section in the 
centreplane. For economy only the part of the flow below z = 2h is illustrated. 

to a maximum a t  the forward stagnation point. Fluid is then accelerated round and 
especially over the crest of the obstacle with a broader region of reduced pressure 
downstream. The generation of vorticity at the boundary will be in accord with the 
discussion in 52.1. The weak mean pressure gradient across the domain is inconsistent 
with Blasius flow and is due to the finite depth of the computational domain. 

Figure 5 (a)  shows trajectories in the surface stress field (see Mason & Sykes 1979a 
for computational details) and figure 5 ( b )  shows flow trajectories in the vertical 
centreplane. There is rear separation, and in the vertical section a spiral node with 
sinking motion in the lee of the obstacle. Figure 6 shows transverse sections of the 
flow field in the vertical plane through the upstream edge of the hill and normal to 
the incident stream. Figure 7 shows such sections in the parallel plane through 
the downstream edge of the hill. The upstream sections include: (a) the stream- 
wise component of velocity, (b) the transverse velocity field and ( c )  the streamwise 
component of vorticity 5 = [ (au/ay)-  (awpz)]. The disturbance in the streamwise 
component of velocity is small in the upstream section, although it extends laterally 
and vertically to considerable distances, an indication that the pressure perturbation 
field is also extensive. As expected the upstream transverse velocity component is 
everywhere upward and outward as the flow is diverted round the obstacle. The 
uniform vertical flow associated with the thickening of the Blasius boundary layer 
may also be noted, especially in the upper parts of the section. The streamwise 
vorticity field a t  the upstream edge of the obstacle (figure 6c) has a quadrupole 
structure with a relatively weak upper vortex pair in the sense for central downwash. 
This upper pair can be traced to the turning of transverse boundary-layer vorticity. 
The stronger underlying pair associated with central upwash comprises vorticity that 



258 P. J .  Mason and B. R. Morton 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  
+ y  

+ - - Y  

FIGURE 6. Transverse sections at the upstream extremity of the obstacle for case A showing: (a) 
contours of the streamwise velocity component with contour interval 0.1 U; (b) flow vectors showing 
transverse velocities. The maximum vertical velocity component has a magnitude 0.024U; (c) 
Contours of the longitudinal vorticity 6 with contour interval O.O4OU/L, one tenth of the maximum 
value, and negative values denoted by dashed contours. An outline of the obstacle is given in each 
figure. 
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FIGURE 7. Transverse sections at the downstream extremity of the obstacle for case A. As figure 6. 
(a) U with contour interval 0.1U (note that the zero contour leaves the surface where the flow 
reverses) ; (b) transverse flow vectors with maximum vertical velocity magnitude 0.012 U, and (c) 

with contour interval 0.029U/L, one tenth of the maximum value. An outline of the obstacle is 
given in each figure. 
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has been generated at the boundary by the tangential component of the pressure 
gradient as it drives flow to the sides of the obstacle. This freshly generated vorticity 
has diffused out from the boundary, has suffered partial annihilation by cross- 
diffusion into the surviving boundary-layer vorticity overhead, and is itself being 
advected and turned with flow round the obstacle. Although the upper vortex pair 
has much weaker core vorticity than the freshly generated pair below, this is because 
the upper pair is older and much more diffuse than the recent pair below. The 
one-sided circulation associated with the region of the upper vortex is very similar 
in magnitude to that of the lower vortex with the result that the net circulation in 
the quadrant defined by positive y- and z-axes is small relative to each contribution 
separately, but with the upwash sense of the lower pair. 

The flow field changes rapidly over the obstacle as the disturbance pressure field 
diverts the flow and generates vorticity a t  the boundary, and advection and diffusion 
modify the existing and newly generated vorticity. The downstream sections in 
a transverse plane through the rear edge of the hill are shown in figure 7 .  The 
streamwise perturbation behind the obstacle is substantially greater than upstream 
and represents the retarded flow of the wake. The transverse flow is broadly inward 
and downward, but with a rather more complex structure than in the upstream 
section. Although there is relatively strong downwash in the upper wake, there is weak 
upwash through an appreciable proportion of the height of the obstacle. This pattern 
may be better understood from the distribution of longitudinal vorticity in the section 
behind the obstacle (figure 7c),  where there is again a quadrupole structure, but of 
opposite sense to that upstream. The lower vortex pair has downwash sense and 
relatively closely spaced contours which are open to the boundary, showing both that 
this is the most recently generated vorticity and that generation is proceeding 
actively in the disturbance pressure field as i t  turns the flow round the obstacle into 
the wake. The upper vortex pair is more diffuse and can be traced to the vorticity 
generated by pressure gradients upstream of the obstacle and subsequently diffused 
upwards and advected round it. Part of the vorticity generated upstream has been 
annihilated by cross-diffusion with the more recent vorticity of the lower pair, and 
part with the residual vorticity from the original boundary layer (which survives only 
in a very weak downwash vortex above both pairs shown and too weak to appear 
in the contour interval adopted). The two trailing-vortex pairs are of comparable 
strength, with the result that little evidence of circulation is shown in the transverse 
flow field of figure 7 ( b ) .  The distribution of streamwise vorticity behind the body may 
be regarded as comprising a lower level of rather concentrated vorticity generated 
on the flanks of the obstacle, a more diffuse middle level of vorticity of opposite sign 
generated on the approaches to the body, and a very diffuse upper level of vorticity 
of the same sign as the lower level which consists of incident boundary-layer vorticity 
turned around the obstacle. The three levels form a sloping stack which is in some 
ways analogous to the layered vorticity of decreasing strength above a plate 
oscillating steadily in its plane. At this location the net circulation in the quadrant 
defined by the postive y- and z-axes is weak and of the downwash sense; there is an 
approximate balance between the component vortex pairs. With increasing distance 
downstream the quadrupole of figure 7 (c) suffers continuing cross-diffusion and 
evolves into a very weak simple trailing-vortex pair with downwash. 

Examination of flows a t  Reynolds numbers below that of case A shows that the 
structure of the longitudinal vorticity fields remains qualitatively similar, and 
enhanced diffusion prevents the generation of significant regions of concentrated 
vorticity . 
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FIGURE 8. Surface pressure field for case B. Contour interval is 0.0059u2. See figure 4 for 
plotting convention. 
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FIGURE 9. Plow directions for case B:  (a )  surface stress pattern and ( b )  streamwise section in the 
centreplane. For economy only the part of the flow below z = 2h is illustrated. 

Figures 8-12 show solution fields for case B at the higher Reynolds number of 120. 
This is smaller than the Reynolds number a t  which the flow becomes unsteady (about 
160) but sufficiently far above that of case A to provide a significant reduction in 
diffusive effects. The surface pressure (figure 8) shows the same features as those seen 
in the lower-Reynolds-number case. The main differences from the lower-Reynolds- 
number case are a more extensive pressure minimum corresponding to a more 
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FIGURE 10. Transverse sections at the upstream extremity of the obstacle for case B showing: (a) 
contours of the streamwise velocity component U with contour interval 0.1 U ;  (b) transverse flow 
vectors with a maximum vertical velocity magnitude 0.025U; (c) contours o f t  with contour interval 
0.091 U / L ;  (d )  contours of the stretching term St = t(au/az) with contour interval 1.2 x 10-3U2/L2; 
(e) contour of the turning term Tu = (av/az)(au/az) - (azo/az)(au/ay) with contour interval 
1.3 x 10PU2/L2. An outline of the obstacle is given in each figure. 

extensive flow separation and a reduced basic pressure gradient corresponding to  a 
reduced boundary-layer growth. There are also more marked pressure disturbances 
associated with the trailing wake but they are too small to  be seen in comparison 
with the main maxima and minima. The surface-stress and centreplane trajectories 
are shown in figures 9 (a, b ) ,  respectively. There is upstream separation, and extensive 
lee separation; and the saddle point of the lee surface stress field is seen to be a point 
of separation. Trajectories are lifted in the separated region and remain aloft 
downstream. It should be noted that upwash and continuing elevation have been 
observed in laboratory experiments on laminar flow (e.g. Hunt et al. 1978), but have 
not hitherto been reconciled with the downwash suggested by horseshoe vortices. We 
shall propose, however, that  lee saddles are points of separation or attachment 
according as the dominant trailing vortices yield upwash or downwash on the 
downstream plane of symmetry. 
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FIGURE 11 (a-c). For caption see facing page. 
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FIGURE 1 1 .  Transverse sections at the downstream extremity of the obstacle for case B. As 
figure 10. (a) U with contour interval 0.1 U (note that the zero contour leaves the surface where the 
flow reverses) ; ( b )  transverse flow vectors with maximum vertical velocity magnitude 0.036U; (c) 
5 with contour interval 0.113UIL; (d) St with contour interval 4.1 x 10-3u2/L2; (e) Tu with contour 
interval 5.2 x iO-3U2/L2. An outline of the obstacle is given in each figure. 

Sections of various variables in vertical transverse planes are shown in figures 10-12. 
These sections are located at each of three stations comprising the upstream edge of 
the obstacle, its downstream edge, and the downstream end of the computational 
domain respectively. The variables are (a )  the streamwise component of velocity, ( b )  
the transverse velocity field, ( c )  the streamwise component of vorticity 6,  ( d )  the 
‘stretching’ term St = [au/ax ,  and ( e )  the ‘turning’ term Tu = qau/ay+[au/az .  
The sum of the stretching and turning terms Tu+St  = o x  Vu (where 
o = V x u = ( & q ,  [)) is the total inertial processing of streamwise vorticity. Although 
the thickness of the Blasius boundary layer is the same as that in case A at the 
upstream edge of the domain, it is evident from the sections that, owing to the higher 
Reynolds number, it is shallower over the rest of the domain. At  the upstream section 
(figure 10) the disturbance velocity field is broadly similar to that in the lower- 
Reynolds-number case. The differences appear more clearly in the longitudinal 
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FIGURE 12 (a+). For caption see facing page. 
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FIGURE 12. Transverse sections at the exit from the computational domain for case B. As 
figure 10. (a )  U with contour interval 0.1U; ( b )  transverse flow vectors with maximum vertical 
velocity magnitude 0.014U; (c) 6 with contour interval 0.01UIL; (d )  St with contour interval 
1.4 x 10-*U2/L2; (e) Tu with contour interval 2.4 x 10-4U2/L2. An outline of the obstacle is given 
in each figure. 

vorticity field (figure 1Oc) where the reduced relative diffusion results in a thinner 
lower-level pair arising from vorticity generated in the pressure gradient over the 
lower boundary and reduced cross-diffusion between the upper and lower vortex 
pairs. Because the upper vortex pair is older and more diffuse than that near the 
boundary, the contouring procedure with contour interval one-tenth of the maximum 
vorticity in the section tends to distort the balance between upper and lower vortices. 
A global representation of the 5-field is provided by the circulation - 0.033 UL in the 
left-hand (y, 2)-quadrant, and the streamwise ,$ flux+0.0031 V L  through the same 
quadrant. This sense of net circulation corresponds with upwash on the upstream 
plane of symmetry and shows that the lower, freshly generated vortex pair is stronger 
in total, although not much stronger as the ,$-flux is of opposite sign because the 
advection velocity increases with distance from the boundary. The stretching term 
St at this location is less than a tenth of the turning term Tu and is mainly due to 
the flow deceleration ahead of the obstacle. It tends to reduce the vorticity magnitude 
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a t  this location. The turning component has a dipole structure corresponding to  the 
expected turning of the basic transverse boundary-layer vorticity. 

I n  the transverse section a t  the downstream edge of the obstacle (figure 11) the 
wake is now stronger and narrower because of the reduced importance of diffusion 
relative to advection, and thcrc is weak reversed flow within the u = 0 contour. The 
transverse velocity-vector array shows a dominant trailing-vortex pair with central 
upwash and symmetrical lateral downwash (figure 11 b ) .  A comparison with 
figures 10 ( b )  and 7 ( b )  shows that the vortex wake is narrower than the corresponding 
upstream disturbance, and appreciably narrower than the lower-Reynolds-number 
wake at the same station. Near the surface the contours of streamwise vorticity 
(figure 11 c )  show a strongly concentrated lower-level vortex pair still suffering active 
generation as the pressure field accelerates flow into the wake. Above this surface 
concentration there is the vortex pair corresponding to the circulation seen in the 
transverse velocity vectors. This has the same sense as the pressure-generated pair 
seen adjacent to the surface upstream of the obstacle. Above this vortex pair, but 
too weak to appear in the contour plot, is a very weak upper-level vortex 
corresponding with the surviving turned basic boundary-layer vorticity. At this 
location the vorticity generated upstream is widely dispersed and largely annihilated 
by cross-diffusion. The features dominating figure 11 (c) are due to recent production 
downstream of the summit of the obstacle. The net circulation in the left-hand 
(y, %)-quadrant is -0.029UL and the c-flux is -0.0019U2L: this corresponds with net 
upwash on the symmetry plane. These are, however, only residual values representing 
the difference between much larger opposed contributions from the three levels, the 
middle-level vortices alone having one-sided circulation approximately seven times 
that in the quadrant (x 0.2UL) ,  while E takes a peak value x UIL.  Noting that a 
relevant local velocity scale is U x 0.4U i t  is evident that  both the individual 
circulations and the typical transverse velocities ( x 0. lU) are comparable with those 
observed in high-Reynolds-number turbulent flow (e.g. Hansen 1975). Although, for 
the Reynolds number considered here, the flow perturbation increases rapidly with 
Reynolds number this tendency must cease with the onset of fully developed 
turbulent flow. I n  the latter case the effective turbulent diffusivity will have a 
different character but is likely to  be comparable in magnitude with that in the 
present moderate-Reynolds-number flow. The fields of St and Tu at this location show 
two effects of similar magnitude. The stretching term St arises from the streamwise 
flow acceleration in the wake and is seen (figure 11 d )  to  promote the concentration of 
the dominant mid-level vortex pair. The turning term Tu (figure 11 e)  shows a larger 
distribution as the transverse vorticity of the wake and boundary layer to the side 
of the obstacle is advected. The sense of turning is opposite to that seen upstream 
and is related to  flow over the centreplane of symmetry being faster than flow to the 
sides of the obstacle. 

An examination of sections between those of figures 10 and 1 1  shows that upstream 
of the summit a qualitative resemblance to the structure seen in figure 10 persists. 
Downstream of the summit there is a qualitative resemblance to the flow seen in 
figure 11 but the maximum vorticity production owing to turning is closer to the 
surface. The generation of the mid-level vortex pair dominating the wake is mainly 
due to turning occurring downstream of the summit. The turning occurs as vorticity 
transverse to the stream and relatively close to the surface of the obstacle is sheared 
by transverse gradients of the longitudinal flow, this vorticity having been generated 
principally by the strong streamwise pressure gradient behind the upstream stag- 
nation point. The sign of the inertial turning is determined by the sign of these 
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FIQURE 13. Pressure field for case C in a streamwise section through the centre of the body. The 
field has an arbitrary zero value; negative values are denoted by dashed contours and the contour 
interval is 0.046U2. 

transverse gradients of longitudinal flow over the obstacle, and upwash vortices 
appear in this case to be a consequence of the flow maximum on top of the obstacle. 

A t  the exit section, five obstacle diameters downstream the longitudinal velocity 
in the wake shows appreciable distortion relating to the dominant vortex pair 
(figure 12a). The pair itself is still clearly visible in the transverse velocity field 
(figure 12b) although it has lifted, spread and weakened, with the maximum vertical 
velocity falling from 0.0356U to 0.014U. The ,$-field has also weakened (figure 12c) 
with the maximum vorticity Emax decreasing from 1.13U/L to 0.103U/L (it should 
be kept in mind that the contour spacing is 0.1 Emax, decreasing with The 
dominant pair still has individual circulation seven times that of the quadrant and 
has central upwash. The lower-level structure is now more complex. The remnants 
of the lower-level pair seen just behind the obstacle are seen as a diffuse pair to the 
sides. The pressure field at the boundary has a weak high under the downflow on either 
side of the dominant vortex pair and a central low. This results in the generation of 
weak line doublets on either side of the centreplane. One reason for the weakening 
of the low-level vortex pair apparent in the section at  the downstream edge of the 
obstacle is the role of the middle-level pair in drawing a thin stream of lower-level 
fluid up the centreplane, where the contributions of vorticity from right and left are 
likely to annihilate each other in considerable measure. The local generation of 5 by 
the action of stretching (figure 1 2 4  shows that the continuing acceleration of the 
streamwise flow is still significant. In  contrast the local generation of ,$ by the action 
of turning (figure 12e) is more complex than immediately behind the obstacle. This 
complex structure arises from the distortion of the wake so as to give velocity maxima 
at the sides of the wake where downflow occurs. The combined field of inertial 
processing shows a nearly equal tendency to reinforce both the dominant vortex pair 
and the lower vortex pair and confirms that the weaker strength of the lower pair 
must stem from increased annihilation. 

Figures 13-18 show solution fields for case C. The Reynolds number, 108, is similar 
to that of case B and just below that at  which the flow becomes unsteady.' Owing 
to the vertical sides to the obstacle the surface pressure is hard to display and instead 
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I~Yow diwrtions for case (” ( a )  surface stress pattern and ( b )  streamwise section in the 
c.eritw plane. For rconorny only the part of the flow below z = 2h is illustrated 

a vertical streamwise section through the centre of the body is illustrated (figure 13). 
The main featurcs are the cxpected maxitnum on the upstream face and minimum 
over the summit. Tht obstacle is bluff and taller than the undisturbed-boundary-layer 
dcpth so the pressure maximum 0.463/’2 is close to the value ( i C r z )  expected for a 
stagnation point in an inviscid flow. Owing to the different parameters, the fractional 
change in the boundary-layer depth as the flow travels through the domain is larger 
than in cases A and 11 and the resulting pressure disturbance is correspondingly 
greater. As before this pressure disturbance is due to the finite depth of the domain 
and is most marked where thc rapid growth of the boundary layer occurs at the inflow. 
The surface-stress and centreplane trajectories are shown in figures 14(a,b) 
respectively. As in case I3 there is an upstream separation, and an extensive lee 
separation; in contrast to cabc 23 the saddle point of the lee surface stress field is seen 
to be a point of attac~hment. The vertical section shows that the lee separation is 
characterized b r  a spiral mode with downwash remote from the body. Upwash occurs 
only immediately behind the body. This flow structure is consistent with a trailing- 
vortex pair with downwash. Previous examples (Hunt et al. 1978, figure 16b) of the 
flow structure associated with downwash have been for turbulent rather than laminar 
flow and have a quite different topology. In their example a streamline from the 
summit of the hill ends in the spiral node, and the rcar separation is the point of 
attachment for a streamline starting upstream. In the present rase the rear separation 
is also a point of attachment but the attaching streamline does not originate upstream 
but in a spiral node which is a source rather than a sink. Flow lines from the summit 
of the hill and above move steadily towards the surface far downstream of the region 
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FIQIJRE 15. Transverse section 0.1L upstream of the upstream extremity of the obstacle for case 
C, showing (a )  contours of the streamwise velocity component U with contour interval 0.1 U ,  ( b )  
transverse flow vectors with a maximum vertical velocity magnitude 0.321 U (in this case a vector 
has been drawn from alternate grid points), (c) 6 with contour interval 0.27UfL.  An outline of the 
obstacle is given in each figure. 



272 P .  J .  Mason and B .  R.  Morton 

T 
Z 

(4 
t 

(4 

+--y 

FIGURE 16(u-c). For caption see facing page. 
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FIGURE 16. Transverse sections 0.1L downstream of the downstream extremity of the obstacle for 
case C. As figure 15. (a )  U with contour interval 0.1U; ( b )  transverse flow vectors with maximum 
vertical velocity 0.071U; (c) 5 with contour interval 0.047UIL; (d )  St with contour interval 
0.0045u1/L2; (e) Tu with contour interval 0.0102u2/L2. An outline of the obstacle is given in each 
figure. 
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FIGURE 17. Transverse section 5L downstream of the centre of the body for case C ;  contour 

interval 0.099UIL. 
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FIGURE 18. Transverse sections at the exit from the computational domain for case C. As figure 15. 
( a )  U with contour interval 0 . l U ;  ( b )  transverse flow vectors with maximum vertical velocity 
0.054U; ( e )  E; with contour interval 7.1 x 10-3U/L. An outline of the obstacle is given in each figure. 
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of flow separation. It is evident that our understanding and knowledge of possible 
flow structures is limited and more work, especially in observations, is needed. 

Sections of various variables in vertical transverse planes are shown in 
figures 15-18. The sections are located at  x = - l . l L ,  + l . l L ,  5.0~5,  and 13.0L, where 
the centre of the object is at  z = 0. A t  the upstream section (figure 15) the streamwise 
velocity field (figure 15a) shows a region of reversed flow. The transverse velocity 
vectors (figure 15b) show a flow radiating out from the elevated pressure maximum. 
At the surface this radial flow is deflected outward. The field of the streamwise 
component of vorticity 6 is qualitatively similar to that in the corresponding section 
in case B but the upper vortex pair arising from the turning of the transverse 
boundary-layer vorticity is more intense. The increase in intensity is due to the 
obstacle being both bluff and taller than the local boundary depth. As before the net 
circulation in each quadrant is very much smaller than the circulation associated with 
individual vortices. Owing to the greater flow separation and more complex 
transverse vectors the inertial-generation terms (not shown) are a little more complex 
than those in case B. However outside the region near the surface and axis of 
symmetry, the dominant inertial processing is still the expected turning of basic 
boundary-layer vorticity to produce a vortex pair with downwash. 

In the section at the downstream edge of the obstacle (figure 16a) the wake is seen 
to be close in size to the outline of the obstacle. The transverse flow vectors 
(figure 16b) show a more complex pattern than those in case B. Although upwash 
dominates the flow near the wake it is clear that the vorticity distribution is more 
complex. The field of the streamwise component of vorticity (figure 16c) confirms this 
but shows some striking similarities with the corresponding field in case B. To the 
side of the wake the structure is qualitatively as in case B but the surviving turned 
basic boundary-layer vorticity has retained its relative magnitude. It is still small 
in relation to the underlying vortex pair with upwash. As with case B this upwash 
pair has arisen mainly from inertial turning occurring to the sides of the body. 
Beneath the upwash pair is a downwash pair suffering generation as the pressure field 
accelerates flow in towards the wake. The main differences from case B occur inside 
the wake. Here there are weaker distributions of vorticity. The inertial-generation 
terms confirm this picture. To the side of the wake these are as in case B but inside 
the wake there are important differences. The main extra feature is the generation 
of a downwash pair within the nearly vertical shear layer comprising the sides of the 
wake. This generation of a downwash pair in the shear layer is maintained for some 
distance downstream and spreads in lateral extent as the wake diffuses. A t  5L 
downstream (figure 17), a location downstream of the rear saddle point in the surface 
stress field, there has been considerable mutual annihilation of the various vortex 
pairs and an apparent merging of the downwash pair generated in the shear layer 
with the downwash pair generated by pressure gradients to the sides of the wake. 
This feature dominates the flow and the contribution of the surviving turned basic 
boundary-layer vorticity is elevated - and very small. 

A t  the exit section (figure 18), about 12L downstream, the wake shows both 
collapse and some modification due to the dominant vortex pair with downwash. The 
transverse velocity vectors show that the circulation is not strong relative to the 
tendency for the wake to collapse. The vorticity field is similar to that seen at x = 5L; 
the downwash pair is seen to remain concentrated. As with case B the generation is 
becoming more complex as the wake is distorted by the action of the trailing vortices. 
We can anticipate that in flows at  higher Reynolds numbers these distortions and 
subsequent changes in vorticity generation will be more important. The difference 
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FIGURE 19. Flow directions for case D: (a) surface stress pattern, and ( b )  streamwise section in the 

centreplane. For economy only the part of the flow below z = 2h is illustrated. 
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FIGURE 20. Surface pressure field for case D. Contour interval is 0.0064u2. See figure 4 for 
plotting convention. 

between the trailing-vortex structures found in cases B and C clearly indicate the 
importance of body shape. In case C the domination by a single vortex pair is less 
clear cut. From the results of the laboratory study presented below it seems likely 
that this is due to the object used in case C being fairly ‘neutral’ in shape and not 
dividing the flow so laterally as, for example, a taller object. Unfortunately an object 



Vortices in the wake of surface-mounted obstacles 

(4 

I ' ' ' " " """"""  ' ' ' ' ' I 
277 

+-----y 

FIQURE 21. Transverse sections at the downstream edge of the obstacle for case D. As figure 6. (a) 
U with contour interval 0.1 U ,  (note that the zero contour leaves the surface where the flow reverses) ; 
( b )  flow vectors with maximum vertical velocity magnitude 0.048U; (c) with contour interval 
0.14UIL. 
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FIGURE 22. Transverse sections at the exit from the computational domain for case D. As figure 6. 
( a )  U with contour interval 0.1U; ( b )  flow vectors with maximum vertical velocity magnitude 
0.021 U ;  (c) 6 with contour interval 0.023CJlL. 
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either with greater height or with a flow with a thinner boundary-layer depth is 
beyond the computational resources available for this work. 

3.2. Vortex wakes of asymmetric obstacles 

The final model run to  be reported is case D for an  obstacle with the same parameters 
as case B except that i t  has elliptical horizontal sections with the major axis inclined 
at + 4 5 O  to the undisturbed stream. The surface stress field and flow trajectories in 
the vertical centreplane are shown in figures 19 (a, b )  respectively. The flow over and 
behind the obstacle is clearly asymmetric, but with broadly similar separation 
features to those of case B. The wake is dominated by a single trailing vortex, as 
shown by the cross-flow visible downstream in the surface stress field. The central 
longitudinal section ( y  = 0) is no longer a plane of symmetry, but the trajectories have 
the same structure as those for the symmetrical case B. Examination of the surface 
pressure field (figure 20) also shows a similarity to  case B but asymmetry, in the sense 
expected for a lifting body (section of an aircraft wing), is evident. Transverse sections 
of the flow field are shown in figures 21 and 22. The upstream sections are not included 
as the flow asymmetry is slight and the contours differ little from those for case B. 
Downstream, however, as shown in the transverse sections a t  the rear edge of the 
obstacle (figures 21 a, b,  c )  and a t  the end of the computational box (figures 2212, b ,  c ) ,  
the asymmetry is pronounced. Immediately behind the obstacle the contours of 
streamwise velocity (a) are a little tighter and displaced to the true left of the 
centreplane but showing little obvious sign of asymmetric rotation. The asymmetry 
shows more clearly in the transverse velocity field ( b ) ,  where the right-hand vortex 
is displaced to  the left but otherwise appears little changed, while the left-hand vortex 
is appreciably weakened. The streamwise vorticity field shows that there is still a 
dominant vortex pair a t  this station just downstream of the obstacle. Examination 
of the fields of inertial generation of 5 a t  this location, St and Tu (not shown), show 
a similar apparently small departure from symmetry. The inertial generation has the 
same basic character as the fields in case B. 

In the whole transverse section the gross circulation is +O.O13UL which is in 
magnitude only about & of that in each core separately. This gross circulation is 
non-zero only because there is a pressure difference laterally across the computational 
box. Ideally a ' lifting ' obstacle experiencing transverse force should generate an 
opposing lateral flux of momentum in passing fluid, and if the lateral boundaries are 
far enough away the appropriate boundary conditions will be zero disturbance 
pressure and a cross-flux of momentum (initially unknown). This computational 
model, however, assumes mirror-image conditions a t  lateral boundaries and therefore 
no cross-flow but instead a reduction in pressure on the sidewall towards the face of 
the obstacle and a corresponding increase in pressure on the side away from it. This 
net difference in pressure across the box will cause a net generation of vorticity over 
the lower boundary and hence a progressive change in circulation with increasing 
distance downstream. Here the high is to the left and low t o  the right, and there is 
progressive generation of positive streamwise vorticity. 

Figures 22(a, b ,  c)  show sections of the flow as it  exits at the downstream end of 
the computational domain. In  spite of the weak asymmetry just behind the obstacle 
the flow is strongly asymmetric by this stage. The streamwise velocity contours now 
show signs of clockwise twisting in the wake (figure 22a) and there is a single dominant 
trailing vortex in the transverse velocity field (figure 22b). The vorticity field 
(figure 22c) confirms the dominance of this single circulation and shows it  to be 
located above a region of vorticity of opposite sign. The other vortices seen in 
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figure 21 (c) have suffered a considerable mutual annihilation as they have been 
advected around the dominant vortex. The stretching and turning terms in the 
equation for streamwise vorticity show that the reinforcement of the dominant vortex 
occurs mainly through the stretching term. Near the surface the presence of a velocity 
maximum on the right-hand side of the wake causes a concentrated region of turning. 
This has a sense opposite to the dominant vortex, and mutual annihilation will occur. 
The rate of decay of the peak vorticity, Emax = 1.4U/L in the section just behind the 
obstacle and Emax = 0.23UIL at the edge of the domain, is less than with the vortex 
pair in case B. This is consistent with the larger scale of the vortices within the ‘single’ 
vortex flow. 

4. The laboratory experiments 
The four cases simulated numerically have yielded a considerable amount of 

information, but it has only been possible to  cover a limited range of parameters. 
Where novel concepts are involved, it is important to provide an independent test 
of numerical simulations by a controlled laboratory experiment, and so a series of 
simple experiments was carried out on flow past a variety of obstacles in a water 
channel. Flow in the wakes of obstacles is a t  least unsteady and generally turbulent 
except a t  relatively low Reynolds numbers, and sophisticated measurement tech- 
niques and data analysis are needed to  identify vortex structures in unsteady or 
turbulent wakes. We are thus forced to confine our attention to low and moderate 
Reynolds numbers. A disadvantage of this is the dependence on Reynolds number 
of the location of flow separation on bluff bodies. I n  the numerical model the 
treatment of bodies with sharp edges would require enhanced resolution and the 
numerical results shown above depend on the Reynolds numbers. I n  the laboratory 
study this Reynolds-number dependence can be minimized by adopting bodies with 
plane faces and sharp edges so that separation is determined by body geometry and 
not Reynolds number. Thus there are limitations on both the numerical and the 
laboratory experiments but the two complement each other with the simulations 
providing specific details and the experiments giving confirmation of the application 
of the conceptual model to a wide range of body shapes. 

The experiments were carried out in a small recirculating water channel with 
working section approximately 200 mm long, 120 mm wide and 120 mm deep. At the 
operating speed used, 4 mm s-l, the sidewall boundary layers were up to  20 mm thick 
and the upper surface, although nominally free, was usually locked with contaminants 
and also supported a boundary layer up to 20 mm thick. The boundary layer on the 
floor of the channel was poorly defined and a false floor was inserted with a sharpened 
leading edge facing upstream, allowing a free working depth not less than 80 mm. 
I n  operation this plate was inclined slightly to prevent separation from the leading 
edge, and it supported a thin boundary layer of known properties under a uniform 
stream. Obstacles were then mounted at distances behind the leading edge with a 
selected ratio of object height to boundary-layer thickness. This experimental 
configuration is illustrated schematically in figure 23. The tendency for the channel 
to increase in width downstream of the leading edge is an incidental feature of the 
apparatus. I n  a previous application i t  compensated for the growth of sidewall 
boundary layers; here it only acts in this fashion to limited degree. The important 
point is that the flow in interior was, as noted below, observed to be uniform. 

The thymol-blue technique of flow visualization is suitable for the range of speeds 
considered. The channel was filled with a solution of thymol-blue pH indicator 
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FIGURE 23. Schematic plan and elevation of the water channel working section. 

buffered just to orange, and a 25 pm platinum wire served as the cathode with a 
remote flow-straightening metal grid as the anode. The platinum wire was placed 
transverse to the stream and parallel to the false floor at a location downstream of 
the region of reversed flow behind the obstacle. It produced transient lines of blue 
dye on application of short pulses of voltage between the electrodes. Measurements 
were taken by observing the dye through a cathetometer and timing the advection 
of dye over fixed distances. Visual records were obtained (and are reproduced in 
figures 24 and 25) by photographing the dye traces from downstream of the obstacle 
using a camera mounted above the free surface and a small inclined mirror suspended 
in the water far downstream of the obstacle. Photographs 24(a) and 25(a) in 
particular show cases of dye traces released from the cathode in the absence of any 
obstacle, and these confirm the uniformity of the stream. 

4.1. Vortex wakes of symmetrical obstacles 
A variety of upright and sloping rectangular plates and other bodies were used in 
the experiments and are illustrated in figure 26; and a summary of the principal 
observations is given in table 2. The channel was operated at uniform speed 
U = 4 mm s-l for all observations, with stream Reynolds number of 100 based on 
the typical lengthscale 25 mm. Two body locations of 50 and 200 mm downstream 
of the leading edge of the base plate were used. At these locations the local 
boundary-layer thickness was measured to be about 7.4 and 15 mm, slightly greater 
than the theoretical values of 6 and 12 mm expected in an ideal Blasius flow. In 
addition to the photographs from downstream which show the broad structure of the 
disturbance flow in sections normal to the stream, a series of measurements was taken 
of vertical velocity in the plane of symmetry downstream of the obstacle. A 
representative value of the disturbance velocity on a transverse plane can be obtained 
using the fact that the vertical speed always has a maximum on the plane of 
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FIGURE 24. Photographs of periodic dye releases from a transverse wire 75 mm downstream of a 
variety of obstacles standing in the ‘thin ’ (6 = 7.4 mm) boundary layer and viewed from an effective 
distance of about 400 mm downstream. The time interval between dye releases is 30 sand the initial 
dye line has travelled about 250 mm when the photographs are taken shortly after the third dye 
release, which indicates the position of the wire. There is significant perspective distortion, but not 
so as to invalidate the clear evidence of trailing-vortex pairs. The photographs show the vortex 
wakes for a series of broad low obstacles, apart from (a) which shows the undistorted dye line in 
the absence of an obstacle: (b) the 2 x 1 rectangle (ii); (c) the prism (xi); ( d )  the re-entrant block 
(xii); and (e), (f) plate (ii) turned about its vertical axis of symmetry through +45O and -45’ 
respectively. 
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FIGURE 25. As in figure 24, but for a series of tall narrow obstacles, apart from (a), which shows 
the undistorted dye line in the absence of an obstacle; (b) the 1 x 2 rectangle (v); (c) the 
backwards-leaning rectangle (vii) ; (d )  the forwards-leaning rectangle (viii) ; and (e), (f) plate (v) 
turned about its vertical axis of symmetry through + 45' and -45' respectively. 

10 F L P  175 
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(ix) (XI (xi) (xii) 

FIGURE 26. The obstacles used in the channel experiments: objects (i)-(iv) are vertical rectangular 
plates 50,24, 12.5 and 6.25 mm wide respectively, and 12.5 mm high; (v) is a vertical plate 12.5 mm 
wide and 25 mm high; (vii) and (viii) are plates tilted 30" from the vertical, back from and forwards 
into the stream respectively, which extend to 25 mm above the surface and are 12.5 mm wide; (vi) 
is a hemisphere of radius 12.5 mm; (ix) and (x) also consist of plates tilted 30" from the vertical 
back from and forward into the stream respectively, these objects extend to 12.5 mm above the 
surface and are 25 mm wide; and (xi) is a 12.5 mm high prism with horizontal isosceles right 
triangular section and (xii) is the block from which i t  was cut. Each object waa mounted as 
illustrated with channel flow from left to right. 

Obstacle hlb h/S ( w l U )  x lo2 Obstacle hlb hlS ( w l  U) x loa 

(i 1 0.25 1.7 + 3.5 (vii) 2.0 1.7 + 3.5 
0.8 + 2.5 0.8 + 5  

(ii) 0.5 1.7 +2.5 (viii) 2.0 1.7 -6 
0.8 +2 0.8 -5 

(iii) 1.0 1.7 -1 (ix) 0.5 1.7 + 3  
0.8 +1  0.8 +3 

(iv) 2.0 1.7 -1 (XI 0.5 1.7 - 4  
0.8 +1  0.8 - 1.5 

(v) 2.0 1.7 -3.5 (xi) 0.5 1.7 -4 
0.8 -0.5 0.8 - 2  

(4 0.5 1.7 -2.5 (xii) 0.5 1.7 +4 
0.8 +1  0.8 + 3.5 

TABLE 2. Representative vertical velocities w at  a distance 75 mm downstream from symmetrical 
obstacles of height h and breadth b in a boundary layer of 2 different depths S and stream of 
velocity U 
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symmetry and varies in magnitude relatively slowly over heights comparable with 
that of the obstacle. The procedure adopted was therefore to observe dye lines at  a 
distance above the base plane equal in each case to half the height of the obstacle, 
and to measure transit times and displacements over the range 60-90 mm down- 
stream of the obstacle. The velocities so measured were close to the maximum vertical 
velocities and were reproducible to within kO.OO5U for typical values of about 
0.03U, an accuracy about that anticipated and sufficient here. The observations are 
described below for each of the twelve obstacles illustrated in figure 26, in each case 
for the two boundary thicknesses S = 7.4 and 15 mm respectively. The rectangular 
plates were each of 3 mm thick Perspex sheet. 

(i) A 4 x 1 rectangular plate, 12.5 mm high and 50 mm wide, mounted perpendicular 
to the base plate and normal to the stream, generates a dominant trailing-vortex pair 
with upwash on the downstream symmetry plane in the ‘thin’ (7.4 mm) boundary 
layer and a slightly weaker vortex pair with upwash in the ‘thick ’ (15 mm) boundary 
layer. 

(ii) A 2 x 1 rectangular plate, 12.5 mm high and 25 mm wide, vertical and normal 
to the stream, generates trailing-vortex pairs with upwash similar in each case to the 
corresponding pair in (i) but a little weaker. This case is shown in figure 24(b), where 
three successive dye lines may be seen : the most recent is very close to the generating 
wire and little distorted, the intermediate one largely obscured, and the oldest shows 
central upwash and downwash to either side of the obstacle corresponding with the 
dominant trailing-vortex pair. 

In each of those two cases with upwash in the wake there is strong upstream 
separation and flow visualization using dye upstream of the obstacle shows the classic 
features of the ‘horseshoe vortex ’. Dye released behind the upstream separation point 
can be seen to spiral into a vortex core which curves away downstream round the 
sides of the obstacle, suggesting a downwash vortex pair to the sides of the wake 
behind the obstacle. However, the dye filaments released from the transverse wire 
behind the obstacle show no sign of this outer vortex pair. Careful observation of the 
dye core as it curves round the obstacle shows that its rotation decays very rapidly 
past the obstacle, and that even where spirals persist there is negligible associated 
rotation downstream. We are faced with one of the classic problems of attempting 
to visualize vortices: The diffusivity v for vorticity is two to three orders of magnitude 
larger than the diffusivities of many of the markers used to visualize flow, and the 
vorticity may annihilate by cross-diffusion or merely spread through a large volume 
in a time in which the dye used suffers little diffusion. The dye, in any case, reflects 
the motion of the fluid, and it may convey little information about vorticity. In these 
cases, as we have already seen from the numerical simulation, opposing vorticity is 
generated a t  the boundary upstream of the obstacle and is advected upwards 
and cross-diffuses into the surviving boundary-layer vorticity, progressively annihil- 
ating it. 

(iii) A 1 x 1 square plate, 12.5 mm high and wide, produces a weak downwash vortex 
pair in the ‘thin’ boundary layer, but a weak upwash vortex pair in the ‘thick’ 
boundary layer. We note that the square plate appears to be critical in the sense that 
it produces upwash vortices where the ratio of obstacle height to boundary-layer 
thickness is 0.8, and downwash vortices for ratio 1.7.  

(iv) A 1 x 2 rectangular plate, 12.5 mm high and 6.25 mm wide, produces weak 
downwash vortices in the ‘thin ’ boundary layer and weak upwash vortices in the 
‘thick’ boundary layer, as in case (iii). 

(v) A 1 x 2 rectangular plate, 25 mm high and 12.5 mm wide, produces a strong 

10-2 
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downwash vortex pair in the ‘thin’ boundary layer, illustrated in figure 25(b) ,  and 
a very weak downwash pair in the ‘thick’ boundary layer. Note that plate (v) has 
the same aspect ratio as plate (iv), but twice the linear dimensions: thus the Reynolds 
number iih/v has more than doubled, and the ratios of body height to boundary-layer 
thickness have doubled from 1.7 and 0.8 to 3.4 and 1.7 respectively. A comparison 
of plate (iv) in the ‘thin’ boundary layer with plate (v) in the ‘thick’ boundary layer 
shows that both produce weak downwash vortices, the latter at higher Reynolds 
numbers being apparently weaker, though the difference lies a t  the bounds of 
experimental error. 

Two important features emerge from the observations on bodies (i)-(v): (I) 
downwash vortices are associated with thin boundary layers and tall obstacles; and (11) 
upwash vortices are associated with low obstacles and thick boundary layers. The obstacle 
used in case C of the numerical study just falls into the former category whilst that  
used in cases A and B is in the latter category. Case C with an object whose height 
is roughly equal to its width is not a clear cut example of the former category. 

(vi) A hemisphere of radius 12.5 mm, produces downwash vortices in a thin 
boundary layer and upwash vortices in a thick boundary layer. It is impossible a t  
this stage to clarify a hemisphere in terms of shape with the rectangular plates, 
although we may note that its behaviour is similar to  the square plate except that 
the hemisphere produces rather stronger downwash vortices in a thin boundary layer. 

The next set of obstacles consist of rectangular plates which slope either back from 
or forward into the flow, in each case a t  30” inclination to the vertical, but retain 
the same vertical streamwise plane of symmetry with upper and lower edges normal 
to the undisturbed stream. 

(vii) A rectangular plate, 12.5 mm wide, inclined to the vertical a t  30’ leaning back 
from the stream about a lower edge that remains normal to the stream. The top of 
the plate extends to a height of 25 mm vertically above the floor. I n  this case much 
of the oncoming stream is lifted over the crest. There must be changes in the surface 
pressure field and hence the rate of generation and orientation of vorticity a t  the 
surface, and also of velocity gradient around the sides and hence of inertial turning 
of advected vorticity. These are complex changes but their aggregate effect is to 
produce trailing-vortex pairs with upwash which are relatively strong for the ‘thin ’ 
boundary layer and very strong for the ‘thick’ layer. The former case is illustrated 
in figure 25(c) .  

(viii) A rectangular plate, 12.5 mm wide inclined forwards into the stream a t  30’ 
to the vertical. The top of the plate again extends to a height of 25 mm above the 
floor. The oncoming stream is here driven downwards and out around the base of 
the plate, with little flow over the crest and again with corrcsponding changes both 
in the direction of pressure-generated vorticity and of its turning with advection in 
the stream. The result is to  produce a dominant trailing-vortex pair with downwash 
that is extremely strong in the ‘thin ’ boundary layer, illustrated in figure 25 ( d ) ,  and 
very strong in the ‘thick’ boundary layer. 

The effect of body slope away from and into the incident stream is confirmed with 
the low 2 x 1 rectangular plate (obstacles (ix) and (x)),  which again shows that 
cross-stream symmetrical bodies with inclined surfaces produce strong trailing-vortex 
pairs with upwash sense when the flow is defected up and over the obstacle and 
downwash sense when it is driven down and round the lower corners of the obstacle. 

It is clear from the channel experiments that trailing-vortex pairs are a normal 
feature of the wakes of symmetrical obstacles mounted on a boundary. Moreover, 
the observations suggest a very simple empirical rule for predicting both the sense 
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of the dominant trailing-vortex pair and its magnitude: flows past obstacles that give 
a flow maximum over their crests produce upwash vortex pairs ; and flows past obstacles 
that give flow maxima to the sides of the obstacle produce downwash vortex p a h .  The 
strength of the vortex pairs relates to the degree of this diversion of flow by the 
obstacles. The diversion arises from the combined effect of the shape of the obstacle 
and the upwind shear. The shear tends to promote a flow maximum over the crest 
but is easily outweighed by the obstacle shape. 

Finally, these empirical laws were tested further with two three-dimensional 
obstacles consisting of a right prism cut from a rectangular block of height 12.5 mm, 
width 25 mm and length in excess of 12.5 mm, and the re-entrant remainder of the 
block from which the prism had been cut. 

(xi) A prism, with height 12.5 mm, triangular faces horizontal, placed symmetri- 
cally with the right-angled vertex facing into the stream, produces trailing-vortex 
pairs with downwash. Prisms divide the flow laterally, but they also direct it 
downwards within the boundary layer to a degree depending on the ratio of body 
height to boundary-layer thickness. The pressure gradients on the slant faces of the 
prism directed into the flow act down and out, and the flow is driven round the corners 
between the base plate and rear edge of the prism. The strong downwash vortices 
for the 'thin' boundary layer are illustrated in figure 24(c) ;  those for the 'thick' 
boundary layer are relatively weaker (table 2 )  because the prism is no longer tall 
relative to the boundary-layer thickness. 

(xii) The block from which the prism was cut, when placed symmetrically with the 
cavity facing upstream produces a strong trailing-vortex pair with upwash, 
illustrated for the 'thin' boundary layer in figure 24(d) .  In this case there is little 
dependence on boundary-layer thickness (except that the edge of the 'thick ' 
boundary layer passes above the block) since the oncoming flow is caught in the cavity 
and forced over the top of the block regardless of its flow profile. 

In  each of the above cases the flow structure in the neighbourhood of the rear saddle 
point of the surface stress field was examined by introducing dye onto the surface. 
All cases with upwash vortices are associated with flow separation (as in case B of 
the numerical simulation) ; and those with downwash vortices are associated with 
flow attachment (as in case C of the numerical simulation). 

4.2. Vortex wakes of asymmetric obstacles 
Vortex wakes of asymmetric obstacles were observed using the 2 x 1 and 1 x 2 
rectangular plates (ii) and (v) respectively, turned skew to the stream about the 
vertical axis of symmetry for a range of inclinations of plate face to incident stream 
and set in the 'thin ' boundary layer. As with the symmetric obstacles, wake flow 
was characterized by photographing distorted dye lines from downstream and by 
measuring the vertical component of disturbance velocity about 75 mm downstream 
of the object in the streamwise plane through the rotation axis of the object and at  
mid-object height. The observed disturbance velocities are given in table 3 for various 
plate inclinations. For both small incidence ( x  0") and near normal incidence (x  90") 
of either plate to the stream, the trailing-vortex pairs of a symmetrical obstacle were 
observed; but for angles of incidence between about 20° and 80" a single trailing 
vortex dominated the wake. The measurements of vertical velocity in table 3 show 
that those trailing vortices are strongest around inclination 45", and illustrations 
of dye-line distortion are given for plate (ii) in figures 24(e, f), and for plate (v) in 
figures 25(e , f ) ,  in each case for plate inclinations to the stream of +45" and -45" 
respectively. The vertical velocities observed at normal incidence (90") are those 
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t?... 0" 10" 22" 45" 67" 90" 
Obstacle 

(w/U)  x 102 (ii)  - 1  +2.5 + 5  +5 + 3  f2 .5  
(v) - 1  +1.5 + 3  + 5  + 4  -3.5 

TABLE 3. Representative vertical velocities w at a distance 75 mm downstream of skew rectangular 
plates standing in a boundary layer of thickness 6 = 7.4 mm and outer stream of velocity 
U = 4 mm s-l for various angles of incidence 0 of plate surface to incident stream. Note: at 
0" the plate is aligned with, and at 90" normal to the stream 

Re . . .  17 33 50 

Obstacle 

(w/V) x lo2 (ii) + 1  + 2  + 6  
(xi) - 1  -2 -5 
(ii) at 45" inclination +2  + 2  + 4  

TABLE 4. The effect of Reynolds number, Re = ah/v ,  on the representative vertical velocity w at 
distance 75 mm downstream from obstacles standing in a boundary layer of thickness S = 7.4 mm 
and outer stream of velocity U = 4 mm s-' 

appearing in table 2 for symmetrical vertical plates which produce vortex pairs with 
upwash and downwash for plates (ii) and (v) respectively; and those for zero incidence 
(0') correspond with very tall narrow symmetrical obstacles which produce relatively 
weak vortex pairs with downwash. Note that the general magnitudes of both solitary 
and pair vortices are broadly similar. 

4.3. Variations with Reynolds number 
A t  low Reynolds numbers the numerical simulation showed an absence of significant 
trailing vortices. The flow was dominated by diffusion with corresponding annihila- 
tion of vorticity within the general zero circulation in transverse sections downstream 
of symmetric obstacles. A t  higher Reynolds numbers than those reported in $3, the 
flows were too unsteady to handle within the scope of this study. 

A limited series of observations was carried out in the channel for two obstacles 
over the range of Reynolds number extending from just above that required for flow 
separation at the obstacle to that for marginally unsteady flow. The Reynolds 
number was varied by changing channel speed, but each obstacle was sited so that 
the local boundary-layer thickness was constant, 6 = 10 mm for all cases. The dis- 
turbance vertical velocities for three different situations at three different Reynolds 
numbers are given in table 4: the situations comprising the 2 x 1 rectangular 
plate normal to the stream (ii), the symmetrical prism (xi), and the 2 x 1 plate inclined 
at  45O to the stream. At the largest Reynolds number the flow is slightly unsteady 
and the disturbance velocities are averaged over ten realizations ; the accuracy 
appeared to be similar to that for steady flows. Reynolds-number dependence for the 
two symmetrical obstacles is large, but changes only the magnitude and not the sense 
of the trailing-vortex pair, and this is due to the changing role of diffusive annihilation 
with changing Reynolds number. There is less Reynolds-number dependence in the 
single trailing vortex behind the asymmetric obstacle, and this is consistent with the 
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reduced possibilities for short-range cross-diffusive annihilation with the single 
vortex. In all cases the velocities close to the object were found to be less dependent 
on Reynolds number than those further downstream, which highlights the very 
important role of diffusion in annihilation. 

5. Summary and conclusions 
Flow past surface-mounted obstacles has been examined by means of numerical 

simulation and laboratory channel-flow experiments. Attention has been confined to 
Reynolds numbers x 100 and only slightly smaller than the values giving unsteady 
flow. These are smaller values of Reynolds number than those considered in most 
previous work on separated flows. The numerical solutions allow a few flows to be 
examined in detail whilst the laboratory experiments consider a wider range of object 
shapes. 

Diagnostic calculations based on the numerical solutions allow an examination of 
the mechanisms leading to the production of trailing vortices. In  accord with the 
discussion of basic ideas in $2 it  is clear that upstream of the body the adverse 
pressure gradient produced by the body generates vorticity opposite in sign to the 
basic boundary-layer vorticity. Upstream of the body and to the sides of the 
streamwise plane through the centre of the body this pressure field also generates a 
vortex pair of a sense giving upwash on the centreplane. Before this freshly generated 
vorticity can diffuse with and annihilate the boundary-layer vorticity both senses of 
vorticity are subject to inertial turning and stretching. This leads to trailing 
circulations of both signs but, at the Reynolds numbers considered here, these 
circulations suffer rapid diffusive cancelling and behind the body they do not persist 
to a significant degree. In  the region around the body the incident boundary-layer 
vorticity is turned so as to produce a trailing-vortex pair with downwash in the plane 
of symmetry. This short-lived feature, which corresponds to the ‘horseshoe vortex ’ 
conceptual mechanism, is significant in flow immediately around the tall body 
considered - case C. This significance is not due to any dominance of the circulations 
to either side of the body but a consequence of the local concentration of vorticity. 
In  flows at  higher Reynolds number previous work suggests that this feature is more 
pronounced. In the region downstream of the body there will be surviving trailing 
vorticity from this upstream generation and turning, but fresh sources will also arise. 

As the flow is driven by pressure gradients over and around the body, 
predominantly transverse vorticity is generated by the pressure gradient at the 
surface of the body. The vorticity generated over the body then leaves the surface 
and becomes the boundary of the wake. Although this generation gives some 
streamwise vorticity and associated slope or orientation of the separation lines we 
have not found this a particularly significant effect. The inertial processing which is 
not independent of this generation but which occurs after flow separation seems more 
important. Apart from residues of vorticity from upstream, just downstream of the 
obstacle the simulations show three noteworthy causes of trailing circulations. These 
are (a) the inertial processing of the transverse velocity shear comprising the 
boundary of the wake, ( b )  the inertial turning of transverse boundary-layer vorticity 
to the side of the wake, and (c) pressure generation at  the surface. Owing to the low 
pressure just behind the body the pressure generation gives a vortex pair with 
downwash. The turning of vorticity to the side of the wake is dominated by the 
decrease in flow speed away from the maximum to the side of the wake and is of a 
sense to give a vortex pair with upwash. The sense of the turning of vorticity in the 
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shear layer is harder to decide. Indeed the sign seems to  depend on both the body 
shape and the influence of upwind shear. These generation mechanisms add to the 
circulations remaining from those generated upstream. We can offer no compelling 
argument to say which of the various contributions should dominate net circulations 
to either side of the body. An important feature of all the transverse sections of the 
flows past objects with cross-stream symmetry is the small magnitude and 
unimportance of the net circulations in the quadrants to  either side of the body. I n  
general the individual areas of a single sign of vorticity have circulations at least an 
order of magnitude greater than the net values. The numerical results suggest that  
the turning of vorticity in the shear layer is most significant in giving dominant 
regions of concentrated vorticity. This is perhaps a natural consequence of the turning 
of the most concentrated lateral components of vorticity. The sense of the inertial 
turning in the shear layer depends upon the flow structure arising from the upwind 
shear and the body shape. In  the numerical examples, the squat body (case B) 
generates a vortex pair with upwash on the plane of symmetry whilst the tall bluff 
body (case B) produces one with downwash on the plane of symmetry. Vortex pairs 
of such senses dominate the wakes of these examples. 

As the trailing vortices proceed downstream they suffer mutual annihilation and 
their strengths decline. However mutual interactions and inertial processing allow 
the features to remain concentrated. I n  the present study it is evident that  the trailing 
circulations modify the streamwise flow. At the Reynolds numbers we have 
considered this process is not very rapid and only a t  the exit of the numerical domain 
is i t  important. At this stage i t  seems that the pattern of vorticity generation is 
modified. We speculate that  at higher Reynolds number a more complex interaction 
of vortices with the basic boundary layer will occur. 

In  the example of flow past a body mounted skew to the stream the only real change 
was a lack of cross-stream symmetry. I n  consequence of such asymmetry the wake 
downstream of the body was dominated by a single concentrated vortex. Although 
the sense of this vortex corresponds to that expected if the obstacle were viewed as 
one half of a lifting body, the simulations confirmed the difference anticipated in $2. 
In  the computational domain the net trailing circulation was more than an order of 
magnitude less than the circulation in the Concentrated single vortex. But for the 
finite separation of the lateral boundaries the net circulation would have been zero. 
To the side of the concentrated vortex there is a broad distribution of vorticity of 
the opposite sign. 

The laboratory observations with a wide range of object shapes and boundary-layer 
depths enable us to suggest some empirical rules for determining the dominant sense 
of trailing-vortex generation. A vortex pair with central upwash is promoted by deep 
boundary layers and objects that  are wide in relation to  their heights. A vortex pair 
with central downwash is promoted by a thin boundary layer and objects that  are 
tall in relation to their heights. The inclination and detailed shape is also found to 
be important. A single empirical rule that  matches all observations of objects with 
cross-stream symmetry emerges : obstacles with a distinct flow maximum over their 
crests produce upwash vortex pairs whilst those that divide the flow laterally and 
are able to give flow maxima to their sides give downwash pairs. Although the shape 
of an obstacle plays the dominant role when the ratio of the height to breadth is not 
near unity, upwind shear may determine the nature of flow past obstacles with 
heightlbreadth ratios near one. This rule is consistent with the suggestion that the 
inertial turning of the lateral vorticity comprising the boundary of the wake is of 
particular importance. 
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FIQURE 27. Schematic illustration of the dominant sense of tilting and twisting of vortex filaments 
in the wake of obstacles. The sense of the corresponding dominant trailing-vortex circulations are 
indicated. Note that although this illustration indicates the gross features of the vortex filament 
connectivity i t  ignores both the initial and developing complexities of the structure. Case (a) shows 
a ‘neutral ’ body with no trailing vortices, (b) a squat body with a flow maximum over the crest 
and upwash vortices, (e) a tall body with a flow maximum to the sides and downwash vortices, 
and (d )  a skew body with a dominant single vortex. 

Finally i t  is useful to consider the connectivity of the vortex filaments in flow past 
surface-mounted obstacles. This connectivity is implicit in the discussion of basic 
ideas given in $2. Viewed in its broadest terms the presence of an arbitrary obstacle 
only generates filaments in closed loops. The whole flow can be considered as an 
addition of various closed loops to the undisturbed boundary-layer vorticity. The 
latter is viewed locally as transverse filaments of supposed infinite extent. When 
the locally generated loops are oriented in vertical planes they have no component in 
the streamwise direction and can only describe the basic structure of flow reductions 
and accelerations around the obstacle. The trailing vortices arise as the loops are 
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distorted out of vertical planes either with cross-stream symmetry for cross-stream 
symmetric bodies or with no such symmetry for skew bodies. It is clear from the 
complex patterns of streamwise vorticity that it would be very difficult to illustrate 
the vortex connectivity of any real flow that we have considered. At considerable risk 
of oversimplification we have provided a schematic illustration (figure 27) of the local 
vortex-filament distortions implied by the dominant trailing circulations that we have 
observed. This illustration of the dominant vortex structure in the wake neglects both 
initial details and the inevitable tendency for distortions to be self-induced as the 
structure propagates downstream. Figure 27 (a)  shows a local section of vortex 
filaments behind a body with no trailing circulation. The addition of vertical loops 
to the boundary-layer filaments gives a loop structure which describes the wake. 
Figures 27 (b ,  c) show how upwash and downwash vortex pairs imply a tilting to and 
fro of the top of the loop relative to body. In  figure 27(b)  a squat body has a flow 
maximum over its crest and this tilts the loop so that the top of the loop extends 
downstream, whilst in figure 27 (c) a tall body has a flow maximum to the sides and 
the top of the loop trails behind. Figure 2 7 ( d )  illustrates a skew loop structure 
consistent with a dominant single trailing vortex. Allowance has been made for a 
wider distribution of opposite vorticity to the sides of the body. 

We do not speculate in any detail upon the generation of trailing vorticity in 
unsteady and turbulent flows a t  high Reynolds number. There can be little doubt 
that  many of the ideas revealed here will have some application but a number of new 
effects will no doubt be important. 
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